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Abstract

We study the search kinetics of a single fixed target by a set of searchers
performing an intermittent random walk, jumping between different internal
states. Exploiting concepts of multi-state and continuous-time random walks
we have calculated the survival probability of a target up to time t, and have
‘optimized’ (minimized) it with regard to the transition probability among
internal states. Our model shows that intermittent strategies always improve
target detection, even for simple diffusion states of motion.

PACS numbers: 05.45.−a, 05.40.Ca, 82.40.Ck

1. Introduction

Recently, the study of optimal strategies for searching specific targets has experienced a fast
growth and motivated a great deal of work. This was due to the subject’s intrinsic relevance in
many physical, chemical and biological phenomena, as well as in social sciences and ecology
[1–5]. Some recent results deal with the case of the so-called non-destructive search [5–7], in
which the target reappears after some time at the same location, or when the searcher always
remains inside the system. Others are based on Lévy flights with randomly reoriented ballistic
trajectories. All of these provide an optimal search methodology. However another type of
random search, an intermittent one, has been recently proposed [1, 3]. Intermittent motion
occurs in nature in a wide range of organisms, from protozoans to mammals. It can be found
in aerial, aquatic and terrestrial locomotion and in many instinctive behaviors including search
and pursuit of prey, mate search, habitat assessment and general travel. Other possibilities
include reduced detection or attack by predators and improved endurance [8–10].

Intermittent motion phenomena have been extensively studied for many years in physics
and chemistry. Examples of such processes are random walks in dynamically disordered
systems [11], such as ionic conduction in polymeric solid electrolytes [12], transport of
Brownions [13], i.e. particles that can be in two or more states, executing a diffusion process in
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each of them but with different diffusion constants; chromatography, where molecules can be
either adsorbed on the column wall or dissolved in the fluid (with transitions from the adsorbed
state into the dissolved state at random times), dynamical trapping problems [14, 15], etc. All
these phenomena have been analyzed within the framework of the multi-state random walk
(MRW) formalism of Weiss and Montroll [16, 17].

Previous works on optimal search strategies [3, 18] were focused on the analysis of the
trapping problem [1]. A canonical example of this problem is a hunter in search of prey,
which are spatially distributed in the field. This problem can be mapped onto the relaxation by
the diffusion model [19]. Here we study a related but different situation, the so-called target
problem, consisting of a single static target and a set of diffusing searchers, initially uniformly
distributed over space.

In this work we consider different diffusive motions and the transitions among them. We
consider a continuous-time random walk (CTRW) with a step size that switches randomly
between one and two lattice sites, where the transition rates are exponential functions of time
with parameters γ1 and γ2. This approach differs from those used in previous works [3, 11].
When dealing with the trapping problem the average search time should be optimized with
respect to the transition rates between the different types of motion. On the other hand, in the
target problem the survival probability of the target [19, 20] (i.e., the probability that the target
remains undetected up to a given time t) has to be optimized as a function of the transition
rates among the internal states representing different types of motion.

Here we show that intermittent strategies always improve target detection in comparison
with the single-state displacement. The main goals of the present paper are two: finding of
a non-monotonic dependence of the survival probability on the above-indicated parameters
(that can drastically alter the search efficiency), and to complement previous results about
optimization of the survival probability of the target [1]. In order to perform our study, we
exploit the theory of MRW as well as results from CTRW [16, 17, 21]. We use the concepts
of joint conditional probability distribution of a searcher and survival probability of the target,
and made the connection to the number of different visited sites by the walker.

The outline of this paper is as follows. In order to make the paper (almost) self-contained,
the following section presents a brief review of the MRW [16, 21] and defines the functions
to be used later. In section 3, we describe our model, focusing on the one-dimensional case.
In section 4, we present some results for the survival probability and related functions, while
in the last section we draw some conclusions.

2. Multi-state random walk: brief review

We start by briefly reviewing the basic formalism of Montroll and Weiss [16, 17]. We assume
that at time t each walker can be at site �s on a lattice, in one of the N internal states characterized
by the following quantities:

• Probability for jump from an internal state: fi(t) dt is the probability of leaving state i
between t and t + dt , given that the walker arrived to that state at t = 0;

• Probability of staying in a given state: Fi(t) = ∫ ∞
t

fi(t) dt is the probability of remaining
with state i, the sojourn t, given that the walker arrived to it at time t = 0;

• Propagator: ξi(�s, �s ′; t) is the probability of finding the walker at site �s, in state i, and at
time t, given that it was at �s ′ in state i at t = 0, and without changing its internal state
during the motion.

We also define the following auxiliary functions:

hi(�s, �s ′; t) = ξi(�s, �s ′; t)fi(t), Hi(�s, �s ′; t) = ξi(�s, �s ′; t)Fi(t).
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We assume that at t = 0 the walker is at �s = �0, with a probability gi of being in state i.
Particularly, in this work we consider two internal states (N = 2), and assume translational
invariance in each state of motion, i.e. ξi(�s, �s ′; t) = ξi(�s − �s ′; t).

Now, we denote by Pj (�s, t |�0, t = 0) the joint conditional probability of being at site �s in
the internal state j (j = 1, 2), independently of the initial internal state. The expressions for
these probabilities (in the Fourier–Laplace space) are given by [16]

P̂ 1(�k, u|�0, t = 0) = g1Ĥ 1(�k; u) + g2Ĥ 1(�k; u)ĥ2(�k; u)

1 − ĥ1(�k; u)ĥ2(�k; u)
, (1)

P̂ 2(�k, u|�0, t = 0) = g2Ĥ 2(�k; u) + g1Ĥ 2(�k; u)ĥ1(�k; u)

1 − ĥ1(�k; u)ĥ2(�k; u)
. (2)

The reported results are general, valid for any probability density fj (t), as well as for any
propagator ξj (�s − �s ′; t), within each state.

In the following, we consider two important particular cases for the transitions between
internal states and the corresponding propagators:

(a) Markovian transitions between internal states
Assuming that the transition between the internal states is Poissonian, i.e.

fj (t) = γj e−γj t , (3)

where j = 1, 2, it can be shown that

ĥi(�k, u) = γi ξ̂i(�k; u + γi), (4)

Ĥ i(�k, u) = ξ̂i (�k; u + γi). (5)

Then,

P̂ 1(�k, u|�0, t = 0) = g1ξ̂1(�k; u + γ1) + g2ξ̂1(�k; u + γ1)γ2ξ̂2(�k; u + γ2)

1 − γ1ξ̂1(�k; u + γ1)γ2ξ̂2(�k; u + γ2)
, (6)

P̂ 2(�k, u|�0, t = 0) = g2ξ̂2(�k; u + γ2) + g1ξ̂1(�k; u + γ2)γ1ξ̂2(�k; u + γ1)

1 − γ1ξ̂1(�k; u + γ1)γ2ξ̂2(�k; u + γ2)
. (7)

These expressions can also be recast as

P̂ 1(�k, u|�0, t = 0) = g1P̂ 11(�k, u|�0, t = 0) + g2P̂ 12(�k, u|�0, t = 0), (8)

P̂ 2(�k, u|�0, t = 0) = g1P̂ 21(�k, u|�0, t = 0) + g2P̂ 22(�k, u|�0, t = 0), (9)

where Pij (�s, t |�0, t = 0) is the joint conditional probability of being at site �s in the internal
state i at time t, given that at t = 0 it was at �s = �0 in internal state j .

(b) CTRW propagators
For CTRW, the form of the propagators (in Fourier–Laplace space) is

ξ̂j (�k; u) = 1 − �̂j (�k = �0; u)

u[1 − �̂j (�k; u)]
, (10)

with j = 1, 2 and where �j(�r, t) is the probability that the walker makes a transition
to site �r between t and t + dt given that it arrived at site 0 at t = 0 without changing
its internal state. Moreover, if the functions �j(�r, t)‘ are separable [16, 17], we have
�̂j (�k; u) = ψj(u)pj (�k). Here ψj(u) is the Laplace transform of the waiting time density
function and pj (�k) is the structure factor of the lattice.
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3. Model for diffusive intermittent searching

We restrict our work to an infinite discrete chain. However, this scheme can also be applied
to higher dimensions and in finite size domains. We assume that there is only one fixed
target/prey located at the origin of the lattice and a set of searchers/predators, initially
uniformly distributed along the chain. We denote the initial occupation probability of each
site by ρ. The ‘search’ starts at t = 0 and when the first searcher finds the target, captures it
with probability one, and the ‘game is over’.

Following [1], we assume that each predator can make its diffusive motion on the lattice
with two types of displacements, jumping between both states. In one of these states, the
searcher explores different regions of the lattice, and in the other state, the predator makes a
compact exploration of its local area. An intermittent strategy consists of choosing the rates
of transition between these internal states. The reason why an intermittent strategy may be
more efficient than simple diffusion is that long jumps give the possibility to go away from a
well-explored region and falling down in the target’s neighborhood. So a combination of both
types of displacements optimize the detection process. We want to show the effectiveness of
the intermittency using the simplest case for diffusive motion in a chain:

• state-1, corresponding to a RW with symmetric jumps to second neighbors (next-nearest
neighbors), with a frequency λ1;

• state-2, also corresponding to a RW with symmetric jumps, but to first neighbors, with a
frequency λ2.

Let us assume that we have a separable RW. The Laplace transform of the waiting time
functions in the Poisson case are ψj(u) = λj/λj + u, and fj (t) are given by equations (3). In
addition, the structure factors in one dimension result p1(k) = cos(2k) and p2(k) = cos(k).

The optimization problem consists of finding the values of the γj which make the prey’s
survival probability, at a given time t, be minimal. The survival probability [1, 16, 17, 21],
φ(t), could be written as φ(t) = e−ρS(t), where S(t) corresponds to the number of different
sites visited in any of the two internal states until time t. It could be shown [21] that for the
target problem in any of the two internal states,

S̃Mar(u) = 1

u2P̂ Mar(s = 0, u|0, t = 0)
. (11)

PMar(s, t |0, t = 0) must be interpreted as the marginal probability for finding the predator at
site s at time t, independently of the internal state; i.e., PMar(s, t |0, t = 0) = P1(s, t |0, t =
0)+P2(s, t |0, t = 0). If the target detection only occurs in one of the two internal states (here,
we assume that the ‘capture’ is only possible in state-2), the survival probability φ2(t) could
be written as φ2(t) = e−ρS2(t), where

S̃2(u) = 1

u

g1P̂ 21(k = 0, u|0, t = 0) + g2P̂ 22(k = 0, u|0, t = 0)

P̃22(s = 0, u|0, t = 0)
. (12)

As usual, we evaluate P̃ij (s, u|0, t = 0) through the inverse transformation

P̃ij (s, u|0, t = 0) = 1

2π

∫ π

−π

P̂ ij (k, u|0, t = 0) eiks dk. (13)

In the following lines, and in order to simplify, we assume λ1 = λ2 = λ, which allows us to
scale the γj in this parameter.

Now, we consider two important cases that can be solved analytically. Firstly, the regime
of high transition rate between internal states; and secondly, the regime without transitions
between internal states.
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(a) Regime of high transition rate between internal states
If (γ1 + γ2) � λ and u � (γ1 + γ2), P̂ Mar(s, u|0, t = 0) may be expressed as

P̃Mar(s, u|0, t = 0) = 1

π

∫ π

0

cos(ks)

(1 + u) −
(

γ1

γ1 + γ2

)
cos(k) −

(
1 − γ1

γ1 + γ2

)
cos(2k)

dk,

(14)

where the γi are measured in units of λ. Calling α = γ1

γ1 + γ2
and z = 1

u + 1
we can write

P̂ Mar(s, u|0, t = 0) = z

π

∫ π

0

cos(ks)

1 − z[α cos(k) + (1 − α) cos(2k)]
dk. (15)

This expression may be compared with equation (4.4) in [1]. Using a Tauberian theorem
[22], it can be shown that in this case

S(t;α) ∼ 2
√

2(4 − 3α)√
π

t1/2 − 4(1 − α)√
α(4 − 3α)

(α 	= 0, t � 1). (16)

In the following section, we will show the behavior of S(t;α) as a function of α for a
given fixed time t.

(b) Regime of non-transitions between internal states: single-state search
In the single-state search (γ1 = γ2 = 0)

Ssingle(u) = 1

u2P11(0, u|0, t = 0)
. (17)

The corresponding expression in the time domain obtained from equation (17) results

Ssingle(t) = 1 +
∫ t

0
e−t ′(I0(t

′) + I1(t
′)) dt ′ (18)

where Iv(t) is the first modified Bessel function of order v. It can be also shown that
P̃11(s = 0, u|0, t = 0) = P̃22(s = 0, u|0, t = 0), and hence, S̃single(u) is the same for
nearest and next-nearest neighbor transitions.

4. Numerical results

In this section, we illustrate the results given by equations (11) and (12), using the numerical
procedure of [23] for calculating the inverse Laplace transform. Also, we give some general
ideas to interpret these results. For simplicity, we choose that both internal states have initial
equal probabilities: g1 = g2 = 1/2, and time is given in units of the diffusion constant (λ).
We also choose for the concentration of searchers to be ρ = 0.1.

In figure 1, we draw the surface SMar(γ1, γ2; t) for a fixed time (t = 100). Note how
the intermittent search can improve (maximize) the number of distinct sites visited, compared
with the single-state search (γ1 = γ2 = 0). From the figure it is apparent that a region of
optimal values in the parameter space (γ1, γ2) arises, that can be appreciated by the gray scale,
where darker means a larger value in SMar(γ1, γ2; t). We want to stress that, for a given value
of γ1 (given a fixed value of t), we can always choose γ2 in such a way to make SMar(γ1, γ2; t)

maximum (and vice versa). The curves shown in figure 2 correspond to cuts of the surface
indicated in figure 1, with γ2 = cte, for t = 100. We also show sections corresponding to the
survival probability φMar(γ1, γ2; t). Here we can see that, for a fixed value of γ2, we always
found a minimum as a function of γ1, i.e. we can optimize the search at the given value of t.
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Figure 1. SMar(γ1, γ2; t = 100), the number of distinct sites visited in the marginal case, i.e.
capture in any of the states, as a function of the transition rates γ1 and γ2.
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Figure 2. Left panel: sections of SMar(γ1, γ2 = cte; t) versus γ1. These plots correspond to cuts
of the surface sketched in figure 1. Right panel: plots of the corresponding survival probability for
each value of γ2 selected in the left panel.

Moreover, we get an important reduction for the survival probability (∼50%) for an optimal
choice of the transition rates.

Figure 3 depicts the behavior of S2(γ1, γ2; t) for search with capture only in state-2. It
shows that we still can obtain a detection’s improvement setting the proper values of (γ1, γ2).
Remembering that T1 = 1/γ1 is the mean stay time in the single-state search, the limit γ1 → 0
shows the expected behavior, S2(γ1, γ2; t) → 0.

Figure 4 corresponds to the asymptotic limit of high transition rates between internal
states. It depicts the curves obtained for three different times: t = 50, 100, 1000, as a function
of the parameter α. Note how the searcher, in order to maximize the number of distinct sites
visited, must spend more time in the re-localization state. The value of α that maximizes
S(t;α), for a fixed t, defines the optimal relation between γ1 and γ2 for improving the search
strategy.
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Figure 3. The number of distinct sites visited, S2(γ1, γ2; t = 100), as a function of γ1 and γ2,
when target detection takes place only in the internal state-2.

Figure 4. Plot of S(t; α) versus α for the fixed values of times t = 50, 100, 1000. The analytical
results given in equation (16) are plotted in dots for comparison.

5. Conclusions

We have presented a simple model for the search kinetics of a hidden target located at the
origin of a chain, by a set of searchers performing intermittent diffusive motion. Each searcher
can be at a particular site on the lattice in one of the two internal states. While a walker is
in internal state-1 (2), it performs a random walk with symmetric jumps to second (first)
neighbors with diffusion constant λ (in both cases). The intermittency is characterized by the
probability density functions for jumps between the internal states. For simplicity, we have
restricted the analysis of intermittency to time exponential functions with parameters γ1 and
γ2. However, our framework is completely general.
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We evaluated the target’s survival probability at a fixed time as a function of the parameters
γ1 and γ2 when the capture of the prey (or detection of the target) only occurs in one or both
internal states. We have established that the survival is a non-monotonic function of γ1 and γ2,
and that for a given value of one of these parameters, there exists a corresponding value of the
other such that the search efficiency can be drastically enhanced. Furthermore, intermittent
strategies always improve target detection when compared with the single-state displacement.

Thus, we have fulfilled the goal of presenting a simple model based only on diffusion
that captures the main features of intermittent search which are relevant for optimization
strategies. We also have reinterpreted and complemented previous related results given in [1].
Our model of intermittent search can be straightforwardly generalized to higher dimensions,
finite size domain systems, continuous systems, ‘imperfect’ detection, ‘dynamical’ behavior
of the target, non-Markovian transitions between internal states, etc. All these aspects will be
the subject of further works.
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